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Intermittent search processes switch between local Browni an
search events and ballistic relocation phases. We demonstr ate
analytically and numerically in one dimension that when rel oca-
tion times are Lévy distributed resulting in a Lévy walk dy namics,
the search process significantly outperforms the previousl| y in-
vestigated case of exponentially distributed relocation t imes: The
resulting Lévy walks reduce oversampling and thus further opti-
mize the intermittent search strategy in the critical situa tion of rare
targets. We also show that a searching agent, that usesthe L~ evy
strategy, is much less sensitive to the target density, whic h would

require considerably less adaptation by the searcher.

Search processes | random processes | optimization | Lévy walk |

movement ecology

Introduction

termittent processes find the target faster than exponeitiegies
in the critical case of rare targets, and their performascatich less
dependent on adapting to the target density.

Intermittent search with Lévy relocations

Generalizing the model from Ref. [19], we consider two pkaJée
search phase scanning for the target by diffusive motioh diffu-
sivity D. With probability per timer; ! the searcher switches to the
relocation phase, during which it moves ballistically wiglocity v

in a random direction [19]. The relocation time is drawn frtime
waiting time distributiomy(¢), which will be considered to be ex-
ponential or Lévy stable. The purpose of relocations is tvenas
quickly as possible away from the area that has just beemctsedyr
and thus the searcher is not scanning for the target in tlisgphTo
compare with previous results we take a closed cell approtuh

Random search processes occur in many areas, from cheBBeal r ggarch is performed on an interval of lengttwith periodic bound-

tions of diffusing reactants [1] to the foraging behaviorbafcteria
and animals [2, 3]. Of general importance is the search effayi.

Brownian search in one and two dimensions involves frequetatns
to an area, leading to oversampling. Higher efficiency, fietdance,
can be achieved by facilitated diffusion in gene regulafiror by

controlled motion in foraging [2, 3]. From theoretical arataanaly-
sis Lévy strategies, in which the searching agent perf@xuoarsions
whose length is drawn from distributions with a heavy tail

Mz) = fa 7177, (1]

ary conditions, corresponding to regularly spaced targittsdensity
1/L. The model can be formulated as an equation for the probabili
densityP(z, t) for the positionz of the searcher in the search phase:

L/2 e
or _ i/ d:c'/ dt' Wz —2',t —t")P(z',t")
ot TL J L2 0
1 o?P
—T—lP(x,t) +DW — pra(t)0(z). [2]

The role of the last term on the right hand side is to removeéna-
cle when it arrives at the target placediat= 0. The densityps. (t)

for 0 < a < 2 were shown to be advantageous [5, 6, 7, 8, 9, 10§hus represents the first arrival time at the target, whidetermined

11,12, 13, 14, 15, 16]: occasional long excursions assestpioring
previously unvisited areas and significantly reduce ovepdimg.

As an alternative to Lévy search, intermittent strategase been
introduced to improve the efficiency of diffusive search,[18, 19,
20]. Intermittent search requires that the searcher cmcally shifts
focus from the search and concentrates on fast relocatiba.rdlo-
cation phase implies that the searcher is wasting time istibet run
as the target cannot be spotted during it. However, the thaer@rch
efficiency is improved by introducing the searcher to presig un-
explored areas [17, 18, 19, 20].

implicitly by the absorbing boundary conditiaf(z = 0,¢) = 0.
The term proportional to the diffusivityp describes the local Brow-
nian motion in the search phase. The tery ! P(x,t) removes the
searcher from locationwith rater; . The searcher is then relocated
according to the integral expression in which the kemi&lz, t) is
the joint probability density of making a relocation of léhg during
atimet. Itis defined by
v(t) 5
W(x,t) = Tnzw6(|x+nL| —ot) . [3a]

In Refs. [18, 19] relocation events were assumed to occur in gere thes-coupling enforces that the distance traveled in tirigevt,

random direction for exponentially distributed time spagiging rise
to a Markovian process. We show here analytically and nwoakyi
in one dimension that this is only a partial solution to osenpling,

as eventually the central limit theorem (CLT) reduces thlacess to
a Brownian random walk with jumps on the scalevef, wherer, is

the typical time spent in a relocation event. In practiceisits can be
reduced by adjusting the average time spent in search avchtin
phases to the density of targets. Lévy strategies on thee bend fun-

and the sum oven rendersiW (x, t) L-periodic inz. 1 (t) is related
to the spatial distribution of the relocatioiéz) by

P(t) = 2vA(vt).

The jump length distribution (z) is assumed to be symmetric around
2 = 0 (no orientational memory).

[3b]

damenta”y circumvent the CLT and we here demonstrate aotaof 870 whom correspondence should be addressed. Email: metz@ph.tum.de

advantage of them over the exponential distribution: Leajk in-
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The search efficiency is quantified by the mean search time

W= [ den(o). [4]
0
To obtain(t) we Fourier expand
L/2 _
P(n,t) = / dx e™ " P(x,t), [5]

L/2

wheren is an integer with corresponding wavenumkgr= 27n/L,
and Laplace transform, where

P(n,u) = /Ooo dte "' P(n,t). [6]
We find
WP(n,u) —no = —W(n,u)P(n,u) — —P(n,u)
i1DkiP(n7 u) - pfa(u? [7]

The initial distribution is uniform,P(z,t = 0) = 1/L, since the
searcher initially has no information on the target posititsolating
P(n,u), summing overn (note thaty P(n,u) = P(z = 0,u) =
0), we find forpg, (u),

L= |

In Laplace space the mean search tiftjeyields from expansion of
Pra @t smallu sincepsa(u) ~ 1 — (t) u+. ... Fromthe average time
T2 spent in a single relocation event(w) ~ 1 — 72u + ...), one

oo

u+[1 =]/

u+ Dk2 +[1 —W(n,u)]/n [8]

Pfa (U)

obtains
_N 2(11 +72)
) *;D71k3+1—A(kn)' [%a]
Here,
Akn) =W(n,u=0) = / dz ™" \(z) [9b]

is the Fourier transform of the relocation length distribnth (k) =
[ dx €™ \(z), at the discrete wavenumbels = 27n/L. We

x 10

Figure 1. z-t diagram with exponential and Lévy relocations, with 71 = 37,

T2 =200,D=1,v=0.1,and L = oo.
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now use Eq. (9a) to determine the search efficiency of (i)yL&awd
(i) exponentially distributed relocations:

(i) For Lévy distributed relocations we use the symmetréwy
stable law with characteristic function [21]

TUT2

e e

A(k) = exp {—c"[k["} ,
From this closed expression the asymptotic form (1) followe
index « is restricted tol < « < 2 so that the mean relocation time
7o Is finite. Fig. 1 depicts trajectories for cases of exporarand
Lévy relocations, distinguishing the Lévy case with itcasional
long relocations.
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Figure 2. solid lines: optimal «, and ratio i of search times for opti-
mal « vs. exponential strategy, as function of L. Dashed lines: ratio n =
O L) / (O L7 (L) ©Of OPtimal vs. fixed 7; search times as a function of
L for exponential and o = 1.25 Lévy strategies (Lo = 5 x 10%). The values
are calculated using asymptotic Egs. (14) and (18), and corresponding optimal
71 and 73 [22]. Inset: Convergence of the asymptotic (t),, (Egs. (14) and (18))
towards the exact (t), (Eq. (9a)) with L for asymptotically optimal 7;. D = 1,
v = 1 for all curves.
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Figure 3. Mean search time for Lévy (o = 1.35) and exponential strategies
as function of 7 at asymptotically optimal 71 (71 = 37.2for Lévy and 71 = 411
for exponential). We chose L = 105, D = 1, v = 1. Simulations versus exact
(Eg. (9a)) and asymptotic (Egs. (14) and (18)) theory.
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We introduce three approximations valid for lage

(a) Assume thatm, > /D71, i.€., that the mean relocation dis-
tance is much longer than the average distance scanned picalty
search phase. We will see that this is self-consistent wighatb-
tained optimal values of; andr, that have the samg-scaling for
large L. This assumption means that k2 and(k,,) are to a good
approximation non-zero at different and we expand

1 1 1
Drk2 41— A) Dk +1 7 T=A(kn)

—1. [11]

(b) Assuming that the search rang&)r; is much smaller than
L, we replace the sum over the first term on the right hand siée of
(11) by an integral, yielding

/°° 1 i — L
o Dmk2+1"  4/Dr

(c) SinceA(kn) ~ 1 — o%|kn|* at small values ok, (k, — 0
atn = 1 in the limit of large L) we approximate the last two terms
of Eq. (11). Namely the contribution from the singularitysatalln
dominates the sum,

> 1
~ 12
;Dle%-i-l [ ]

oo 1 L [e3
> mm i (o) d@ o
Here((a) = 77, n~ is the Riemanr function.
Collecting (a) to (c), Eq. (9a) is approximated by
(8) ~ 2(r1 + 72) {4\/% + <%)a C(a)] L [4]

For honest comparison between Lévy and exponential gteste
we determine the respective optimalandr.. Solvingd(t)/0m =0

Performance of Lévy intermittent search

The search timét) for exponential strategies scales likéd/3 for
optimal 1 and T2, proving that Lévy strategies with < « < 2 are
increasingly more efficient than the exponential strateffiedecreas-
ing target density. In Fig. 3 we shaoft) as function of relocation time
T2.

An additional advantage of Lévy strategies is due the sgali
7; ~ L@~ 1/(@=1/2) of the optimalr;: for a close to unity the op-
timal strategy becomes insensitive to the target densitys eans
that it is less important for the searcher to have advanceletne
of the density of target& ! if it follows a small « Lévy strategy,
since it can choose; that are almost optimal over a broad range of
densities. This pointis illustrated in Fig. 2.

To understand better the-dependence of the Lévy strategy
we study the first arrival densitys.(t) for large L, where again
L > vre > +Drmi. We consider times much longer than one
relocation-search cycle such thafu) ~ 1 — m2u + ..., and rewrite
Eq. (8) as
1 m 1 1

Pl R W L =)
where we have introduced the term
1 & 1
Wolw) = 7 n;w u+ Dk2 + [L = W(n,u)]/m [21]

The last expression can be simplified following similar apma-
tions as for(t) before. The separation of length scales leading to
approximation (a) allows us to write

- 1}

[22]

oo

T1 1 1
Wo(u) ~ L Z [Dﬁkz% +1 + Tiu+1—W(n,u)

n=-—oo

andd(t)/0m = 0 simultaneously, we obtain from Eq. (14) that at For the last two terms in Eq. (22) the contribution at smaligain

largeL
7~ (bfa®) T (b)) T (18]
where (using2 = /1 + 4(a — 1)a)
a=(14+92)/2[a-1]), [16a]

=2VD[2a 4+ Q- 3] ¢(a) L " [F(%jl)] [16b]

such that the optimal; scale withL like L(*~1/(¢=1/2) ' According
to Eq. (14),(t) will then scale likeL ®*~2/(22=1 ‘implying that for
largeL the more efficient search will occur farclose to 1. However,
the prefactor to thé-scaling diverges as — 1, so the optimal choice
of « will be somewhat larger than 1 for any finife as demonstrated
in Fig. 2. The inset of Fig. 2 shows the validity of the approate
(t) for optimal ;.
(i) For exponentially distributed relocation with

¥(t)

approximations (a) to (c) also apply, with= v7. The correspond-
ing results for(t) and optimalr; obtain by replacind’(1 — 1/«) by
/2 and takingy = 2:

1 _—t
=7y te /"2,

[17]

T1 + T2 6L L 2
t) ~ — 18
(t ~ m+<7)] (18
m~ (D) 18 )P L3 2, 7 ~2m [19]

These expressions agree with those of Ref. [19, 23].

Footline Author

dominate the sum (approximation (c)); expandifign, ) at small
kn andu producesV (n,u) ~ 1 — o%|kn|* — 72u. Collecting the
results, we find

o~ 1 1
T = {Dﬁk’% +1 + (11 4+ T2)u + 0“|k’n|“] '

[23]
We focus on times short enough such that thperiodicity of the
problem does not yet play a role, so that Laplace space>
(0%kn|®)/(m1 + 72) atn = 1. In this approximation we replace

Wo (u)

the sumL~"' 3> by the integral[*_ dk, /(2r), obtaining
Wo(u) ~ 1 71/[asin (7/a) o] [24]

o\/Dryt lu(m )T

For shorter times (corresponding to larggme discard the subdom-
inant second term in Eq. (24). Laplace inversion of Eq. (2@nt
produces

pfa(t) ~ 24/ DTl/ [L(T1 + 7'2)] . [25]

At later times (smaller:) the second term in Eq. (24) dominates, and
the plateau (25) turns into

T VT2

Pralt) ~ % [Sin (E)r L(r+m)/*t1=1/e

The crossover between these two regimes occurs when thesvafu
expressions (26) and (25) become equal, i.e., at

[26]

—1)

t~ (1 + ) {alsin(m/a)ors/ [1vDm] )7 (27)
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Discussion better than for the optimized exponential strategy wheq 4/3.

In Eq. (25),2v/Dr; is the average length scanned in a search event. A remark on the recent discussion about the empirical observ
Division by L yields the probability to find the target during this phase, tion of Lévy distributions of relocation lengths in aninfataging is
and1/(m; + 72) is the rate at which the search phase itself occurs. An order. Thus, while the original publications provideddence of

crucial part in this interpretation is that the probabitifysearching in
a previously scanned area is negligible. This assumptidirbvéak
down at some point because of the searcher’s lack of orientdt
memory. The searcher will then begin to revisit exploredmegwith
a reduced probability of finding the target as a result. Thisses the
crossover to the power-law behavior (26). Fig. 4 shows theotter
from plateau to inverse power-law of the first arrival. Atevenger
times, finite size effects cause a turnover to an exponeifeizdy.
From Eq. (26) the advantage of haviagclose to unity at large
L becomes evident: the presence of rare but long relocatientgv
reduces the risk of rescanning already visited areas whiitbevim-
portant for largel.. However, the downside to choosing arvalue
too close to 1 is that an increased amount of very long realmtst
implies an increased amount of very short ones too, as thagee

long-tailed relocation lengths in accordance with thecatttonsid-
erations [7, 8, 6], a reanalysis of the data reveals that tiggnal
data contained few extreme events for the flight times aéaroval
of which the data no longer unequivocally allow an interatien as
Lévy pattern[25]. Inthat paper also few other previougwtof Lévy
foraging patterns were invalidated. This has caused socertainty
about the general relevance of Lévy search patterns inariorag-
ing [26]. Among the recent criticisms of reference [25] wéerdo
the consideration of finite size effects of real traject®iiereference
[27] that were shown to reestablish the validity of a Lévgdxhsearch
mechanism for the albatross flight. It is our belief that y &earch
models show a distinct advantage over strategies govesniecen-
tral limit theorem. However, it will require considerablgrger data
sets to be able to tell for sure whether typically animalsauspecific

distance is fixed by [24]. This means that the crossover to the search strategy. The value of this and similar theoreticaliss is to

less favorable situation described by Eq. (26) happeneeab that

provide a framework for the analysis of data that are beifigced

larger o becomes more efficient for shorter search times relevant &ow or in the future. The robustness of the search efficiehtgay

smallerL.

Intermittent strategies are beneficial when purely diffesiearch
would slow down over time due to the increasing returns teiptesly
scanned areas (oversampling). Choosing an exponentasgyrfor
relocations, however, only partially solves this probleAt times

strategies to changing target densities, as demonstratedfdér the
first time, appears to be a key concept in the discussion otlsea
mechanisms, and potentially an important evolutionaraathge.

Our analysis relies on the assumption that each relocasion i

pointed toward a random direction. This will be a good modael f

t > 2, the CLT governs, leading to oversampling on a typical scalenon-intelligent” search, similar to bacterial movementabsence

vT2. Conversely, Lévy-intermittent strategies are not botmthe
CLT, rendering them a more amenable solution to reduce aners
pling and therefore advantageous in the search for raret&rghl-
though less pronounced, the problem of oversampling stilics in
two dimensional search studied in [18]. Lévy strategiesepected
to improve the search efficiency in this case, as well; howasto
what extent remains to be established quantitatively.

of chemical or temperature gradients during which tumbiirgion
changes with directed motion [2]. Intelligent creature8 improve
the target search by partial or complete memory, avoidiegipusly
visited locations. It will be interesting to study in moret@iémodels
with search memory.

Part of this research was funded by the Natural Sciences agdhé&ering

Based on our results we advocate that intermittent stegegi Research Counsel (NSERC) of Canada, and the Canada ReSéaichpro-

should not be thought of as alternatives to Lévy strategiesontrast,
the synergistic combination of intermittent search ansylLé&loca-
tion strategies turns out to be beneficial. Moreover, a divary walk
intermittent search strategy (with fixedl) is almost optimal over a
wide range of sparse target densities, which might be aegjitahd-
vantage for creatures that have limited abilities to adjusir search
parameters.

We note, however, that the small scaling exponen pfvith L
for the Lévy strategy is not a result of the Lévy part of thetegy
alone. To explain what we mean by this we will define the pueey”
strategy as a strategy where the searcher only quicklyhisstamedi-
ate neighborhood for the target at the end of each relocafibas we

assume that; has a small finite value (alternatively the target could
have a small finite size and = 0) and only consider optimization of

the strategy with respect to. Doing this we find from our analytic
asymptotic result that the optimab scales withL as L'~/ and
that this results in a scaling) ~ L?>~'/. A scaling which increases
faster with L for any @« > 1 compared with the result wherg is
also optimized. And it is only an improvement over the opfieu
exponential strategy whem < 3/2. Without any optimization the
Lévy strategy would result ift) ~ L<, a scaling that that is still
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Figure 4. First arrival density versus time. The crosses are simulation data,
while the straight lines are the intermediate regimes of Eq. (25) and Eq. (26).
Parameters are: 71 = 35, 72 = 50, L = 10%, 0 = 1.75,v = land D = 1.
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