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Intermittent search processes switch between local Browni an
search events and ballistic relocation phases. We demonstr ate
analytically and numerically in one dimension that when rel oca-
tion times are Lévy distributed resulting in a Lévy walk dy namics,
the search process significantly outperforms the previousl y in-
vestigated case of exponentially distributed relocation t imes: The
resulting Lévy walks reduce oversampling and thus further opti-
mize the intermittent search strategy in the critical situa tion of rare
targets. We also show that a searching agent, that uses the L´ evy
strategy, is much less sensitive to the target density, whic h would
require considerably less adaptation by the searcher.

Search processes | random processes | optimization | Lévy walk |
movement ecology

Introduction
Random search processes occur in many areas, from chemical reac-
tions of diffusing reactants [1] to the foraging behavior ofbacteria
and animals [2, 3]. Of general importance is the search efficiency.
Brownian search in one and two dimensions involves frequentreturns
to an area, leading to oversampling. Higher efficiency, for instance,
can be achieved by facilitated diffusion in gene regulation[4] or by
controlled motion in foraging [2, 3]. From theoretical and data analy-
sis Lévy strategies, in which the searching agent performsexcursions
whose length is drawn from distributions with a heavy tail

λ(x) ≃ |x|−1−α, [1]

for 0 < α < 2 were shown to be advantageous [5, 6, 7, 8, 9, 10,
11, 12, 13, 14, 15, 16]: occasional long excursions assist inexploring
previously unvisited areas and significantly reduce oversampling.

As an alternative to Lévy search, intermittent strategieshave been
introduced to improve the efficiency of diffusive search [17, 18, 19,
20]. Intermittent search requires that the searcher occasionally shifts
focus from the search and concentrates on fast relocation. The relo-
cation phase implies that the searcher is wasting time in theshort run
as the target cannot be spotted during it. However, the overall search
efficiency is improved by introducing the searcher to previously un-
explored areas [17, 18, 19, 20].

In Refs. [18, 19] relocation events were assumed to occur in a
random direction for exponentially distributed time spans, giving rise
to a Markovian process. We show here analytically and numerically
in one dimension that this is only a partial solution to oversampling,
as eventually the central limit theorem (CLT) reduces the process to
a Brownian random walk with jumps on the scale ofvτ2, whereτ2 is
the typical time spent in a relocation event. In practice, revisits can be
reduced by adjusting the average time spent in search and relocation
phases to the density of targets. Lévy strategies on the other hand fun-
damentally circumvent the CLT and we here demonstrate a twofold
advantage of them over the exponential distribution: Lévywalk in-

termittent processes find the target faster than exponential strategies
in the critical case of rare targets, and their performance is much less
dependent on adapting to the target density.

Intermittent search with Lévy relocations
Generalizing the model from Ref. [19], we consider two phases: The
search phase scanning for the target by diffusive motion with diffu-
sivity D. With probability per timeτ−1

1 the searcher switches to the
relocation phase, during which it moves ballistically withvelocity v
in a random direction [19]. The relocation time is drawn fromthe
waiting time distributionψ(t), which will be considered to be ex-
ponential or Lévy stable. The purpose of relocations is to move as
quickly as possible away from the area that has just been searched,
and thus the searcher is not scanning for the target in this phase. To
compare with previous results we take a closed cell approach: the
search is performed on an interval of lengthL with periodic bound-
ary conditions, corresponding to regularly spaced targetswith density
1/L. The model can be formulated as an equation for the probability
densityP (x, t) for the positionx of the searcher in the search phase:

∂P

∂t
=

1

τ1

Z L/2

−L/2

dx′

Z ∞

0

dt′ W (x− x′, t− t′)P (x′, t′)

− 1

τ1
P (x, t) +D

∂2P

∂x2
− pfa(t)δ(x). [2]

The role of the last term on the right hand side is to remove theparti-
cle when it arrives at the target placed atx = 0. The densitypfa(t)
thus represents the first arrival time at the target, which isdetermined
implicitly by the absorbing boundary conditionP (x = 0, t) = 0.
The term proportional to the diffusivityD describes the local Brow-
nian motion in the search phase. The term−τ−1

1 P (x, t) removes the
searcher from locationxwith rateτ−1

1 . The searcher is then relocated
according to the integral expression in which the kernelW (x, t) is
the joint probability density of making a relocation of lengthx during
a timet. It is defined by

W (x, t) =
ψ(t)

2

∞
X

n=−∞

δ(|x+ nL| − vt) . [3a ]

Here theδ-coupling enforces that the distance traveled in timet is vt,
and the sum overn rendersW (x, t) L-periodic inx. ψ(t) is related
to the spatial distribution of the relocationsλ(x) by

ψ(t) = 2vλ(vt). [3b]

The jump length distributionλ(x) is assumed to be symmetric around
x = 0 (no orientational memory).
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The search efficiency is quantified by the mean search time

〈t〉 =

Z ∞

0

dt tpfa(t). [4 ]

To obtain〈t〉 we Fourier expand

P (n, t) =

Z L/2

−L/2

dx eiknxP (x, t), [5]

wheren is an integer with corresponding wavenumberkn = 2πn/L,
and Laplace transform, where

P (n, u) =

Z ∞

0

dt e−utP (n, t). [6 ]

We find

uP (n, u) − δn,0 =
1

τ1
W (n, u)P (n, u) − 1

τ1
P (n, u)

−Dk2
nP (n, u) − pfa(u). [7]

The initial distribution is uniform,P (x, t = 0) = 1/L, since the
searcher initially has no information on the target position. Isolating
P (n, u), summing overn (note that

P

n P (n, u) = P (x = 0, u) =
0), we find forpfa(u),

pfa(u) =

(

∞
X

n=−∞

u+ [1 − ψ(u)]/τ1
u+Dk2

n + [1 −W (n,u)]/τ1

)−1

. [8]

In Laplace space the mean search time〈t〉 yields from expansion of
pfa at smallu sincepfa(u) ∼ 1−〈t〉u+ . . . . From the average time
τ2 spent in a single relocation event (ψ(u) ∼ 1 − τ2u + . . . ), one
obtains

〈t〉 =

∞
X

n=1

2(τ1 + τ2)

Dτ1k2
n + 1 − λ(kn)

. [9a ]

Here,

λ(kn) = W (n,u = 0) =

Z ∞

−∞

dx eiknxλ(x) [9b]

is the Fourier transform of the relocation length distribution λ(k) =
R ∞

−∞
dx eikxλ(x), at the discrete wavenumberskn = 2πn/L. We
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Figure 1. x-t diagram with exponential and Lévy relocations, with τ1 = 37,
τ2 = 200, D = 1, v = 0.1, and L = ∞.

now use Eq. (9a) to determine the search efficiency of (i) Lévy and
(ii) exponentially distributed relocations:

(i) For Lévy distributed relocations we use the symmetric Lévy
stable law with characteristic function [21]

λ(k) = exp {−σα|k|α} , σ =
πvτ2

[2Γ(1 − 1/α)]
. [10]

From this closed expression the asymptotic form (1) follows. The
indexα is restricted to1 < α < 2 so that the mean relocation time
τ2 is finite. Fig. 1 depicts trajectories for cases of exponential and
Lévy relocations, distinguishing the Lévy case with its occasional
long relocations.
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Figure 2. Solid lines: optimal α, and ratio η of search times for opti-
mal α vs. exponential strategy, as function of L. Dashed lines: ratio η =

〈t〉L,τi(L) / 〈t〉L,τi(L0) of optimal vs. fixed τi search times as a function of

L for exponential and α = 1.25 Lévy strategies (L0 = 5 × 10
4). The values

are calculated using asymptotic Eqs. (14) and (18), and corresponding optimal
τ1 and τ2 [22]. Inset: Convergence of the asymptotic 〈t〉a (Eqs. (14) and (18))
towards the exact 〈t〉e (Eq. (9a)) with L for asymptotically optimal τi. D = 1,
v = 1 for all curves.
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We introduce three approximations valid for largeL:
(a) Assume thatvτ2 ≫

√
Dτ1, i.e., that the mean relocation dis-

tance is much longer than the average distance scanned in a typical
search phase. We will see that this is self-consistent with the ob-
tained optimal values ofτ1 andτ2 that have the sameL-scaling for
largeL. This assumption means thatDτ1k2

n andλ(kn) are to a good
approximation non-zero at differentn, and we expand

1

Dτ1k2
n + 1 − λ(kn)

∼ 1

Dτ1k2
n + 1

+
1

1 − λ(kn)
− 1 . [11]

(b) Assuming that the search range
√
Dτ1 is much smaller than

L, we replace the sum over the first term on the right hand side ofEq.
(11) by an integral, yielding

∞
X

n=1

1

Dτ1k2
n + 1

∼
Z ∞

0

1

Dτ1k2
n + 1

dn =
L

4
√
Dτ1

. [12]

(c) Sinceλ(kn) ∼ 1 − σα|kn|α at small values ofkn (kn → 0
atn = 1 in the limit of largeL) we approximate the last two terms
of Eq. (11). Namely the contribution from the singularity atsmalln
dominates the sum,

∞
X

n=1

»

1

1 − λ(kn)
− 1

–

∼
„

L

2πσ

«α

ζ(α). [13]

Hereζ(α) =
P∞

n=1 n
−α is the Riemannζ function.

Collecting (a) to (c), Eq. (9a) is approximated by

〈t〉 ∼ 2(τ1 + τ2)

»

L

4
√
Dτ1

+

„

L

2πσ

«α

ζ(α)

–

. [14]

For honest comparison between Lévy and exponential strategies,
we determine the respective optimalτ1 andτ2. Solving∂〈t〉/∂τ1 = 0
and∂〈t〉/∂τ2 = 0 simultaneously, we obtain from Eq. (14) that at
largeL

τ1 ∼ (b/aα)1/(α−1/2) , τ2 ∼ (b/
√
a)1/(α−1/2), [15]

where (usingΩ ≡
p

1 + 4(α− 1)α)

a = (1 + Ω)/(2[α − 1]), [16a]

b = 2
√
D [2α+ Ω − 3] ζ(α)Lα−1

"

Γ
`

1 − α−1
´

π2v

#α

[16b]

such that the optimalτi scale withL like L(α−1)/(α−1/2). According
to Eq. (14),〈t〉 will then scale likeL(3α−2)/(2α−1), implying that for
largeL the more efficient search will occur forα close to 1. However,
the prefactor to theL-scaling diverges asα → 1, so the optimal choice
of α will be somewhat larger than 1 for any finiteL, as demonstrated
in Fig. 2. The inset of Fig. 2 shows the validity of the approximate
〈t〉 for optimalτi.

(ii) For exponentially distributed relocation with

ψ(t) = τ−1
2 e−t/τ2 , [17]

approximations (a) to (c) also apply, withσ = vτ2. The correspond-
ing results for〈t〉 and optimalτi obtain by replacingΓ(1 − 1/α) by
π/2 and takingα = 2:

〈t〉 ∼ τ1 + τ2
12

"

6L√
Dτ1

+

„

L

vτ2

«2
#

, [18]

τ1 ∼
`

D/
ˆ

18v4˜´1/3
L2/3/2, τ2 ∼ 2τ1. [19]

These expressions agree with those of Ref. [19, 23].

Performance of Lévy intermittent search
The search time〈t〉 for exponential strategies scales likeL4/3 for
optimalτ1 andτ2, proving that Lévy strategies with1 < α < 2 are
increasingly more efficient than the exponential strategies for decreas-
ing target density. In Fig. 3 we show〈t〉 as function of relocation time
τ2.

An additional advantage of Lévy strategies is due the scaling
τi ≃ L(α−1)/(α−1/2) of the optimalτi: for α close to unity the op-
timal strategy becomes insensitive to the target density. This means
that it is less important for the searcher to have advance knowledge
of the density of targetsL−1 if it follows a smallα Lévy strategy,
since it can chooseτi that are almost optimal over a broad range of
densities. This point is illustrated in Fig. 2.

To understand better theα-dependence of the Lévy strategy
we study the first arrival densitypfa(t) for large L, where again
L ≫ vτ2 ≫

√
Dτ1. We consider times much longer than one

relocation-search cycle such thatψ(u) ∼ 1− τ2u+ . . . , and rewrite
Eq. (8) as

pfa(u) ∼
1

u

τ1
τ1 + τ2

1

W0(u)

1

L
, [20]

where we have introduced the term

W0(u) =
1

L

∞
X

n=−∞

1

u+Dk2
n + [1 −W (n, u)]/τ1

. [21]

The last expression can be simplified following similar approxima-
tions as for〈t〉 before. The separation of length scales leading to
approximation (a) allows us to write

W0(u) ∼
τ1
L

∞
X

n=−∞

»

1

Dτ1k2
n + 1

+
1

τ1u+ 1 −W (n, u)
− 1

–

.

[22]
For the last two terms in Eq. (22) the contribution at smalln again
dominate the sum (approximation (c)); expandingW (n,u) at small
kn andu producesW (n, u) ∼ 1 − σα|kn|α − τ2u. Collecting the
results, we find

W0(u) ∼
τ1
L

∞
X

n=−∞

»

1

Dτ1k2
n + 1

+
1

(τ1 + τ2)u+ σα|kn|α
–

.

[23]
We focus on times short enough such that theL-periodicity of the
problem does not yet play a role, so that Laplace spaceu ≫
(σα|kn|α)/(τ1 + τ2) at n = 1. In this approximation we replace
the sumL−1 P∞

n=−∞ by the integral
R ∞

−∞
dkn/(2π), obtaining

W0(u) ∼ 1

2
q

Dτ−1
1

+
τ1/[α sin (π/α)σ]

[u(τ1 + τ2)]
1−1/α

. [24]

For shorter times (corresponding to largeru) we discard the subdom-
inant second term in Eq. (24). Laplace inversion of Eq. (20) then
produces

pfa(t) ∼ 2
√
Dτ1/ [L(τ1 + τ2)] . [25]

At later times (smalleru) the second term in Eq. (24) dominates, and
the plateau (25) turns into

pfa(t) ∼
α

2

h

sin
“π

α

”i2 vτ2

L (τ1 + τ2)
1/α t1−1/α

. [26]

The crossover between these two regimes occurs when the values of
expressions (26) and (25) become equal, i.e., at

t ∼ (τ1 + τ2)
n

α[sin(π/α)]2vτ2/
h

4
√
Dτ1

ioα/(α−1)

. [27]
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Discussion
In Eq. (25),2

√
Dτ1 is the average length scanned in a search event.

Division byL yields the probability to find the target during this phase,
and1/(τ1 + τ2) is the rate at which the search phase itself occurs. A
crucial part in this interpretation is that the probabilityof searching in
a previously scanned area is negligible. This assumption will break
down at some point because of the searcher’s lack of orientational
memory. The searcher will then begin to revisit explored regions with
a reduced probability of finding the target as a result. This causes the
crossover to the power-law behavior (26). Fig. 4 shows the turnover
from plateau to inverse power-law of the first arrival. At even longer
times, finite size effects cause a turnover to an exponentialdecay.

From Eq. (26) the advantage of havingα close to unity at large
L becomes evident: the presence of rare but long relocation events
reduces the risk of rescanning already visited areas which will be im-
portant for largeL. However, the downside to choosing anα-value
too close to 1 is that an increased amount of very long relocations
implies an increased amount of very short ones too, as the average
distance is fixed byvτ2 [24]. This means that the crossover to the
less favorable situation described by Eq. (26) happens earlier, so that
largerα becomes more efficient for shorter search times relevant at
smallerL.

Intermittent strategies are beneficial when purely diffusive search
would slow down over time due to the increasing returns to previously
scanned areas (oversampling). Choosing an exponential strategy for
relocations, however, only partially solves this problem:At times
t ≫ τ2, the CLT governs, leading to oversampling on a typical scale
vτ2. Conversely, Lévy-intermittent strategies are not boundto the
CLT, rendering them a more amenable solution to reduce oversam-
pling and therefore advantageous in the search for rare targets. Al-
though less pronounced, the problem of oversampling still occurs in
two dimensional search studied in [18]. Lévy strategies are expected
to improve the search efficiency in this case, as well; however, as to
what extent remains to be established quantitatively.

Based on our results we advocate that intermittent strategies
should not be thought of as alternatives to Lévy strategies. In contrast,
the synergistic combination of intermittent search and Lévy reloca-
tion strategies turns out to be beneficial. Moreover, a givenLévy walk
intermittent search strategy (with fixedτi) is almost optimal over a
wide range of sparse target densities, which might be a strategic ad-
vantage for creatures that have limited abilities to adjusttheir search
parameters.

We note, however, that the small scaling exponent of〈t〉 with L
for the Lévy strategy is not a result of the Lévy part of the strategy
alone. To explain what we mean by this we will define the pure L´evy
strategy as a strategy where the searcher only quickly testshis immedi-
ate neighborhood for the target at the end of each relocation. Thus we
assume thatτ1 has a small finite value (alternatively the target could
have a small finite size andτ1 = 0) and only consider optimization of
the strategy with respect toτ2. Doing this we find from our analytic
asymptotic result that the optimalτ2 scales withL asL1−1/α and
that this results in a scaling〈t〉 ≃ L2−1/α. A scaling which increases
faster withL for anyα > 1 compared with the result whereτ1 is
also optimized. And it is only an improvement over the optimized
exponential strategy whenα < 3/2. Without any optimization the
Lévy strategy would result in〈t〉 ≃ Lα, a scaling that that is still

better than for the optimized exponential strategy whenα < 4/3.
A remark on the recent discussion about the empirical observa-

tion of Lévy distributions of relocation lengths in animalforaging is
in order. Thus, while the original publications provided evidence of
long-tailed relocation lengths in accordance with theoretical consid-
erations [7, 8, 6], a reanalysis of the data reveals that the original
data contained few extreme events for the flight times after removal
of which the data no longer unequivocally allow an interpretation as
Lévy pattern [25]. In that paper also few other previous claims of Lévy
foraging patterns were invalidated. This has caused some uncertainty
about the general relevance of Lévy search patterns in animal forag-
ing [26]. Among the recent criticisms of reference [25] we refer to
the consideration of finite size effects of real trajectories in reference
[27] that were shown to reestablish the validity of a Lévy based search
mechanism for the albatross flight. It is our belief that Lévy search
models show a distinct advantage over strategies governed by the cen-
tral limit theorem. However, it will require considerably larger data
sets to be able to tell for sure whether typically animals usea specific
search strategy. The value of this and similar theoretical studies is to
provide a framework for the analysis of data that are being collected
now or in the future. The robustness of the search efficiency of Lévy
strategies to changing target densities, as demonstrated here for the
first time, appears to be a key concept in the discussion of search
mechanisms, and potentially an important evolutionary advantage.

Our analysis relies on the assumption that each relocation is
pointed toward a random direction. This will be a good model for
“non-intelligent” search, similar to bacterial movement in absence
of chemical or temperature gradients during which tumblingmotion
changes with directed motion [2]. Intelligent creatures will improve
the target search by partial or complete memory, avoiding previously
visited locations. It will be interesting to study in more detail models
with search memory.

Part of this research was funded by the Natural Sciences and Engineering
Research Counsel (NSERC) of Canada, and the Canada ResearchChairs pro-
gramme.
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